

Wrangling Data with DuckDB

Hannes Muhleisen
DuckDB Labs

ALL OPINIONS AND RANTS
IN THIS TALK -- EVEN THOSE THAT
ARE JUSTIFIED -- ARE ONLY MEANT TO
SPARK DISCUSSION. ALL LUMINARY
QUOTES ARE MADE UP ... POORLY.
THE FOLLOWING TALK CONTAINS A
GERMAN ACCENT AND DUE TO ITS
CONTENT SHOULD NOT BE TAKEN
SERIOUSLY BY ANYONE R

p1p 1nstall duckdb

curl install.duckdb.org | bash

%ATTERIES
INCLUDED D

ClickBench — a Benchmark For Analytical DBMS

Methodology | Reproduce and Validate the Results | Add a System | Hardware Benchmark | Versions Benchmark | See also: JSONBench

| V|

System: All AlloyDB AlloyDB (tuned) Athena (partitioned) Athena (single) Aurora for MySQL Aurora for PostgreSQL
Bigquery ByConity ByteHouse chDB (DataFrame) chDB (Parquet, partitioned) chDB CHYT Citus
ClickHouse Cloud (aws) ClickHouse Cloud (azure) ClickHouse Cloud (gcp) ClickHouse (data lake, partitioned)

ClickHouse (data lake, single) ClickHouse (Parquet, partitioned) ClickHouse (Parquet, single) ClickHouse (web)

.................................. Qlickblovina......Olivkkbmana.tunadl..... QlckbHaiiaa fivmad. . macovanvl . Obnudbharrv et R Ltuaed) Lo ek e IR s ssssssssnsssnsannnnnnnnnns

.................................. O LR TG I Y2 R L i D S * S A 1O VP S A B U 2 R I e TR I = A3 L KOG =+ w e v e v e eaeess
rad.xlplus c6a.4xlarge, 700gb gp2 S2 S24 2XL 3XL 4XL L1-16CPU 32GB c6a.4xlarge, 500gb gp3
16 vCPU 64GB 4 vCPU 16GB 8 vCPU 32GB 64 vCPU 256GB

Cluster size: All 1T 2 3 4 8 9 16 32 ©64 128 serverless 1 2 3 undefined

Metric: ColdRun HotRun Load Time Storage Size
System & Machine Relative time (lower is better)
Umbra (c6a.metal, 500gb gp2): x1.60
Salesforce Hyper (c6a.metal, 500gb gp2): x1.68
DuckDB (c6a.metal, 500gb gp2): x2.15
ClickHouse (tuned, memory) (c6a.metal, 500gb gp2): x2.15
ClickHouse (tuned) (c6a.metal, 500gb gp2): x2.29

ClickHouse (c6a.metal, 500gb gp2): x2.51

RTABench

a Benchmark For Real Time Analytics Repo

System:

.,_._:,
I_l
I_J

TimescaleDB ClickHouse Timescale Cloud MongoDB Duck Postgres ClickHouse Cloud (aws) MySQL

Database Type: All General Purpose Real-time Analytics Batch Analytics

Machine: [77)7] ['ms.4x1arge, 560gb gp2 | [céa.4xlarge, 5e@gb gp2 | [4 vCPU 16GB | [12 vCPU 48 GB (3x: 4vCPU 16GB) | | 16 vCPU 64GB

6 vCPU 24 GB (3x: 2vCPU 8GB) 8 vCPU 32GB 24 vCPU 96 GB (3x: 8vCPU 32GB)

Cluster size: 211 1 3

Metric: Cold Run Hot Run Load Time Storage Size

System and Machine Relative time (lower is better)

TimescaleDB (cba.4xlarge, 500gb gp2). x1.44

TimescaleDB (mS.4xlarge, 500gb gp2). x1.79

RTABench

a Benchmark For Real Time Analytics Repo

System:

p~
|_I
I_l

TimescaleDB ClickHouse Timescale Cloud MongoDB DuckDB Postgres ClickHouse Cloud (aws) MySQL

Database Type:

—
—d

General Purpose Real-time Analytics Batch Analytics

Machine: [77)7] ['ms.4x1arge, 560gb gp2 | [céa.4xlarge, 5e@gb gp2 | [4 vCPU 16GB | [12 vCPU 48 GB (3x: 4vCPU 16GB) | | 16 vCPU 64GB

6 vCPU 24 GB (3x: 2vCPU 8GB) 8 vCPU 32GB 24 vCPU 96 GB (3x: 8vCPU 32GB)

Cluster size: 211 1 3

Metric: Cold Run Hot Run Load Time Storage Size

System and Machine Relative time (lower is better)

DuckDB (c6a.4xlarge, 500gb gp2) x1.15

DuckDB (m5.4xlarge, 500gb gp2) x1.51

 DuckDB isn't built for real-time analytics, so it's excluded
~ from the main results, but it was the fastest in the
benchmark. Given its popularity, we included it in the
benchmark to serve as a point of reference, and it surprised us: It
was 3.5x faster than TimescaleDB and 7.3x faster than

ClickHouse.

It Scales!

SF 1 000 SF 10 000 SF 100 000

Raspberry Pi MacBook Pro EC2 i7ie.48xlarge
16 GB RAM 128 GB RAM 1.5 TB RAM

23.0k

20.0k

15.0K

GitHub Stars

10.0k

9.0k

| ®» duckdb/duckdb !

2019

2020

O>5tar History

202

2022
Date

20235

2024 2025
X3 star—history.com

DUcKkDB Labs

f’b
’

Volcano—An Extensible and Parallel Query
' Evaluation System

Goetz Graefe

Abstract—To investigate the interactions of extensibility and
parallelism in database query processing, we have developed a
new dataflow query execution system called Volcano. The Vol-
cano effort provides a rich environment for research and edu-
cation in database systems design, heuristics for query opti-
mization, parallel query execution, and resource allocation.

Volcano uses a standard interface between algebra opera-
tors, allowing easy addition of new operators and operator im-
plementations. Operations on individual items, e.g., predi-
cates, are imported into the query processing operators using
support functions. The semantics of support functions is not
prescribed; any data type including complex objects and any
operation can be realized. Thus, Volcano is extensible with new
operators, algorithms, data types, and type-specific methods.

Volcano includes two novel meta-operators. The choose-plan
meta-operator supports dynamic query evaluation plans that al-
low delaying selected optimization decisions until run-time,
e.g., for embedded queries with free variables. The exchange
meta-operator supports intra-operator parallelism on parti-
tioned datasets and both vertical and horizontal inter-operator
parallelism, translating between demand-driven dataflow within

tem as it lacks features such as a user-friendly query lan-
guage, a type system for instances (record definitions), a
query optimizer, and catalogs. Because of this focus, Vol-
cano 1s able to serve as an experimental vehicle for a mul-
titude of purposes, all of them open-ended, which results
in a combination of requirements that have not been in-
tegrated in a single system before. First, it is modular and
extensible to enable future research, e.g., on algorithms,
data models, resource allocation, parallel execution, load
balancing, and query optimization heuristics. Thus, Vol-
cano provides an infrastructure for experimental research
rather than a final research prototype in itself. Second, it
1s simple in its design to allow student use and research.
Modularity and simplicity are very important for this pur-
pose because they allow students to begin working on
projects without an understanding of the entire design and
all its details, and they permit several concurrent student
proiects. Third. Volcano’s design does not presume any

1994

) 5
[f— Oy — ~—b — [
i -
O
5 —
.—b— (C

Morsel-Driven Parallelism: A NUMA-Aware Query
Evaluation Framework for the Many-Core Age

Viktor Leis* Peter Boncz! Alfons Kemper* Thomas Neumann*

2014

SELECT FIRST(name), SUM(rev+tax)
FROM cust JOIN sale USING(cid) GROUP BY cid

GROUP BY BUILD cid
FIRST(name), SUM(rev+tax)

Projection Projection
rev+tax rev+tax
HASH JOIN PROBE HASH JOIN PROBE
cust.cid=sale.cid cust.cid=sale.cid
Partial Scan #1 Partial Scan #2
sale sale

Projection
rev+tax
HASH JOIN PROBE
cust.cid=sale.cid
Partial Scan #3
sale

GROUP BY BUILD c1id
FIRST(name), SUM(rev+tax)

cid |FIRST| SUM
5 ASML | 4200
3 INGA | 8400

cid |FIRST| SUM
5 ASML | 2100
2 PHIA 12600

GROUP BY BUILD c1id
FIRST(name), SUM(rev+tax)

cid |FIRST| SUM
5 ASML | 6300
cid |FIRST| SUM 2 PRLA | 12600
3 INGA | 8400
5 ASML | 4200
3 INGA | 8400

cid |FIRST| SUM
5 ASML | 2100
2 PHIA 12600

cid

FIRS

SUM

FIRST(name), SUM(rev+tax)

GROUP BY BUILD cid

ASML

4200

Partition 1

cid | FIRS | SUM
5 ASML | 6300
Partition 1
cid | FIRS | SUM
3 INGA | 8400
Partition 2

N

cid | FIRS | SUM

2 PHIA 12600

\ 3 INGA | 8400
Partition 2

cid

FIRS

ASML

2100

Partition 1

cid | FIRS | SUM
2 PHIA |12600
Partition 2

ORDER BY GROUPBY

JOIN

OVER COPY

SELECT FIRST(name), SUM(rev+tax)
FROM cust JOIN sale USING(cid) GROUP BY cid

GROUP BY BUILD c-id 1 TB
FIRST (name), SUM(rev+tax)
Result
Projection
rev+tax
HASH JOIN PROBE
cust.cid=sale.cid

GROUP BY SCAN

HASH JOIN BUILD
cust.cid=sale.cid

1TB

Execution Time

s Minimal Memory Utilization
=== Fyll Memory Utilization
=== Memory Limit

Data size

Or crash A

ut-Of-

ore

L

e

1w www.wdc.com amnm! ” ':I.!!.‘l'.!t.t:.‘ e

-— e

WD_BLACK -
SN750 SE

e
‘e

) Western Digital.

Saving Private Hash Join

Laurens Kuiper, Paul Grof3, Peter Boncz, Hannes Miihleisen

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
{laurens.kuiper,paul.gross,peter.boncz,hannes.muehleisen}@cwi.nl

VLDB 202535!

MetaData 1 i Row Page 1) i Var Page 1

(Row Page: 1 e -
Row Offset: @
Var Page: 1

Var Offset: 0 - = -
Var Ptr: 0x042
Count: 5 — - -

MetaData 2 ---

(Row Page: 2 N _ -
Row Offset: O =

Var Page: 1
Var Offset: 42
Var Ptr: 0x042 (" A 4

Count: 1 Row Page 2 P Var Page 2

Z

\.

MetaData 3

(Row Page: 2
Row Offset: 1
Var Page: 2
Var Offset: 0
Var Ptr: 0x210
Count: 4)

MetaData 4

Eow g?%e 3 . \\\\\\\\\\\
ow set: 4
Var Page: 2 Row Page 3

Var Offset: 31
Var Ptr: 0x210

.

Count: 2 y
MetaData 5
(Row Page: 3

Row Offset: 2
Var Page: 3

Var Offset: 0
Var Ptr: 0x840
Count: 3 y

\.

/

Morsel Bi'

Morsel Bz

®

Morsel Bn

\-

4 Buildir
Thread 1

. . .1
Morsel Bi - '
"" -
\

J
Morsel Bz

Thread 2

Partition &

"" Materialize (L _J L _J|
S - I J

Morsel Bn)

p \
Haptiz; (Thread T
NEele

\ 7/ |

%

\o

42 Building A

- A "Partitions)
Thread 1 :
R C,Radlx 1_:
.+ 0V
fMorse'[B va(sg:;a\-\- . Pages
""V Exchange

(_Radix 2 O
a) adix
RE 52 . ~_Pages °

Partition &
Materialize (| ‘
——»
| (Exchange }
\) V'

Morsel Bn)

Py,
Cir.

M
\ 7/

\-

_Radix R 1
" Pages

4 Probing)

" Initial Probe (Morsel P.) (Morsel P, ‘Morsel Py’

'Hash Table)
e
N\ 0x084 , v) & v), A v),

-

-

TN
N\0x168

\\ J

(Select) [Select) (Select)
A | Ny (N

I

Join

Output]

AL D)
') /'
o I
,

{ ¢ L e Mo W /
NN = N
viX % 9]

‘)

(Repeat Until Done)

4 Probing N
" Initial Probe (Morsel P.) (Morsel P, ‘Morsel Py A
rHas Table!

N\ 0x084 \)) \§ J \ v J

-

- (Select) [Select) (Select)

N
N A - N o
> (Overflow)Z(Ove rﬂow (Ove rﬂow] .
”Subsequent Probes * * + +

Hash Tabl e)

| o Thread 1|(Thread 2| ~ [Thread T
IR EE SRR

N\ 0%2!

Jox

Output]

‘Morsel Bu

-

L]

:l Exchange »
X

Building . _ <:
- ™
Thread 1 Part;ﬁlons
3 i Rer)dlx 1 D
M D
ages
‘Morsel Bi) (Tnsert
"l' N/ |
) . Thread 2
" ™
Materialize
Exchange |

Insert

r~ Probing)

" Initial Probe (Morsel P:) (Morsel P2 ‘Morsel Pu) A
s "l' 'l" ""
.’ 0)1:08 " /NS ’, Y "4

Select Select Select

0x168 Join)

(N ~ 4 4 R _J

Overflow [{ Overflow Overflow | §

Hash Table)

Insert

"Subsequent Probes *

v

[Thread][Thread 2] . [Thread T]
) 3

NN

‘)

(Repeat Until Done)

N

Output)

-

1000
800
600
400

N
-
-

0

1000
800
600
400
200

0

Execution Time [s]

Inner Cardinality

A A A

100M

Outer Cardinality

200M 300M 400M 500M

A A AATTT
A A A

=
A

=
A

\ /'/. P
" i

e
._I—-._._-_.

DuckDB
PostgreSQL
HyPer
Umbra

200M 400M o600M 800OM

Rows

1000M

@duckdb.org
@hannes.muehleisen.org

