Speedrunning the Lakehouse

Shipping a FaaS that looks like a database (and vice versa)

South Bay Systems
07.22.25

Ciao, I’'mJacopo!

| Co-founderand CTO at Bauplan.
Backed by IE, SPC, Wes McKinney, Spencer Kimball, Chris Re et al.

| Started the “Reasonable Scale” movement.
Co-founder at Tooso and lead Al at TSX:CVO after the acquisition.

| 10 yearsup and down the stackin R&D, product, open source
ICML, KDD, sigMoD, VLDB, NAACL, siGiR et al, >2k stars, »>I0OM+ downloads.

https://www.kmworld.com/Articles/News/News/Coveo-acquires-Tooso-combining-AI-with-ecommerce-132919.aspx

It takes a (distributed) village

| While | am the only speaker today, Matt, Ciro, Luca, Nate, Vlad (and others,

unfortunately without a chibi) share with me the credit for whatever value these
ideas may have.

It takes a (distributed) village

| Obviously, all the remaining mistakes are theirs -

@ speed-run
/'spéd ran/

verb

gerund or present participle: speedrunning

complete (a video game, or level of a game) as fast as possible.

'l used to be able to speedrun this game in less than 20 minutes’

Super Mario Bros. (1985])

Super Mario Series

NTERIA NES SNES WiiVC +14

J¢ Category extensions @ Discord

Leaderboards News 8 Guides 42 Resources 44

‘ol

B—

Any% Warpless Any% All-Stars Warpless All-Stars

| Version

NTSC s

' 2= Filters

AR Show rules T|me

il
| Player Time

¥ _ 4m 54s 565ms

o E£= avergell O 4m 54s 748ms

4dm 54s 748ms

= Tree_05 ®) 4m 54s 864ms

4dm 54s 864 ms

Whatis a Lakehouse?

| DataonS3
| Multi-use case

| Multi-language
(SQL, Python)

Lakehouse: A New Generation of Open Platforms that Unify
Data Warehousing and Advanced Analytics

Michael Armbrust?, Ali Ghodsi'%, Reynold Xin', Matei Zaharia'->
Databricks, 2UC Berkeley, >Stanford University

Abstract

This paper argues that the data warehouse architecture as we know
it today will wither in the coming years and be replaced by a new
architectural pattern, the Lakehouse, which will (i) be based on open
direct-access data formats, such as Apache Parquet, (ii) have first-
class support for machine learning and data science, and (iii) offer
state-of-the-art performance. Lakehouses can help address several
major challenges with data warehouses, including data staleness,
reliability, total cost of ownership, data lock-in, and limited use-case
support. We discuss how the industry is already moving toward
Lakehouses and how this shift may affect work in data management.
We also report results from a Lakehouse system using Parquet that
is competitive with popular cloud data warehouses on TPC-DS.

1 Introduction

This paper argues that the data warehouse architecture as we know
it today will wane in the coming years and be replaced by a new
architectural pattern, which we refer to as the Lakehouse, char-
acterized by (i) open direct-access data formats, such as Apache
Parquet and ORC, (ii) first-class support for machine learning and
data science workloads, and (iii) state-of-the-art performance.
The history of data warehousing started with helping business
leaders get analytical insights by collecting data from operational
databases into centralized warehouses, which then could be used
for decision support and business intelligence (BI). Data in these
warehouses would be written with schema-on-write, which ensured

quality and governance downstream. In this architecture, a small
subset of data in the lake would later be ETLed to a downstream
data warehouse (such as Teradata) for the most important decision
support and BI applications. The use of open formats also made
data lake data directly accessible to a wide range of other analytics
engines, such as machine learning systems [30, 37, 42].

From 2015 onwards, cloud data lakes, such as S3, ADLS and GCS,
started replacing HDFS. They have superior durability (often >10
nines), geo-replication, and most importantly, extremely low cost
with the possibility of automatic, even cheaper, archival storage,
e.g., AWS Glacier. The rest of the architecture is largely the same in
the cloud as in the second generation systems, with a downstream
data warehouse such as Redshift or Snowflake. This two-tier data
lake + warehouse architecture is now dominant in the industry in
our experience (used at virtually all Fortune 500 enterprises).

This brings us to the challenges with current data architectures.
While the cloud data lake and warehouse architecture is ostensibly
cheap due to separate storage (e.g., S3) and compute (e.g., Redshift),
a two-tier architecture is highly complex for users. In the first gener-
ation platforms, all data was ETLed from operational data systems
directly into a warehouse. In today’s architectures, data is first
ETLed into lakes, and then again ELTed into warehouses, creating
complexity, delays, and new failure modes. Moreover, enterprise
use cases now include advanced analytics such as machine learning,
for which neither data lakes nor warehouses are ideal. Specifically,
today’s data architectures commonly suffer from four problems:

Reliability. Keeping the data lake and warehouse consistent is
difficult and costly. Continuous engineering is required to ETL data

rFa

Whatis a Lakehouse?

Dataon S3
Multi-use case

Multi-language
(SQL, Python)

Interaction UX Infrastructure

Traditional DLH

Batch pipeline Submit API One-off cluster

Dev. pipeline Notebook Session Dev. cluster
Inter. query Web Editor (JDBC Driver) Warehouse

Armbrust et al. - L akehouse: A New Generation of Open Platforms

https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

@ 4:17:01(17?1)

> YouTube - —+ Create Al

SPARK ARCHITECTURE

Worker Node

FExecutor

Driver program

SparkContext (Wﬂ

Worker Neode

Executor

Cache

Task

P Pp| o 19:38/41701 @B O (= o 7

-Tutorial (From Zero to Hero) _Masterclass
m From Ansh Lamba Big Data Cloud c >

@ Ansh Lam.ba Join w 75 48K CJ 2> Share 1 Download
UP 46.6K subscribers All In One RMM Solution

} G
nininOne Qle,,

pip 1nstall bauplan

bauplan checkout my-branch
bauplan run

Speedrun alakehouse > simplicity at the core

| Easytoreasonabout

- Simple abstractions, "looks like
code”

- Aunified compute model,
“everythingis afunction”

VLDB 2023: Building a serverless Data Lakehouse from spare parts

Functions everywhere!

A sample pipeline

transactions euro_selection usd_by_ country
““____ ____“

def usd_by country(

13 44 US def euro selection(144 13 T {feouto selection T 14
144 13 T df=transactions 146] T E B
146] T . df = _df —

transform_input(df)

transform_input(df) return df

return df

Not a Faa$S, nota DB, but a secret third thing

USER BAUPLAN AWsS CUSTOMER AWS

| ! [l WORKER #2

—] ’
3):ﬁ=—_l_‘___b WORKER #

(2)

|
|
|
i
DATA CATALOG | FILES
l

Bl cnmmses T TN TR TR

l
I I
] |
! | * | / L

CLI/ SDK

Control Plane

Data Plane

Pipelines are chained functions (Batch / Dev)

functions

S3readf

S3Swritef

def euro selection(
df=euro _selection

) :
~df = transform _input(df)
return _df

user fl

~

>
AAPACﬁERow>>>

def usd by country(
df=euro_selection

) :
_df = transform_input(df)
return _df

userf’Z \

e

@ ‘ N
A
\funcUons//

Queries are chained functions as well!

functions

S3readf

Flight server

a

<

functions

N

4

PROs: no heterogenous infra + trivial to learn

| Canwere-use existing FaaS? NO!!!

— Hardwa [e ||m|tat|0n8 Interaction UX Ipﬁ'ﬁ\s\truc/ttffe\
) . Traditional DLH \ /
- N O DAG awdreness Batch pipeline Submit API One-off cluster
Dev. pipeline Notebook Session ev. cluster
_ S | oW fe e d b aC k | 00 p Inter. query Web Editor (JDBC Driver) arehou

Middleware 2024: Bauplan: zero-copy. scale-up FaaS for data pipelines

https://arxiv.org/abs/2410.17465

CONs: need anew a FaaS-for-data

| New programming model

- Expressdataand code dependencies P UX Inffastructiife,
. Traditional DLH N y
| N ewruntime Batch pipeline Submit API One-off cluster
| | Dev. pipeline Notebook Session ev. cluster
- Functionlife CyC|e Inter. query Web Editor (JDBC Driver) arehou

- Scheduling

Middleware 2024: Bauplan: zero-copy. scale-up FaaS for data pipelines

https://arxiv.org/abs/2410.17465

New programming model

LAY

\Q,

clear “division of labor”
between platform and users

New programming model

[bau.py

@bauplan.model(materialize=True)

@bauplan.python(
II3.1@II,
pip={"pandas”: "1.5.3"}

{ bau.py

@bauplan.model ()

@bauplan.python(
||3.11|| ,

pip=1"pandas": "2.2"%

)
def usd by country(

data=bauplan.Model("euro selection™)

)

def euro selection(
data=bauplan.Model (
"transactions",
columns=["1d", "usd", "country"],
filter="eventTime BETWEEN 2023-01-01 AND

2023-02-01"
)

aggregation here

return a dataframe
return _df

filtering here
return a dataframe
return _df

New programming model

Signature Table(s)->Table

@bauplan.model(materialize=True)
@bauplan.python(

@bauplan.model ()

@bauplan.python(
"3.11", "3.10",

pip=1"pandas": "2.2"% pip={"pandas": "1.5.3"}

)
def euro_selection(
data=bauplan.Model (

"transactions",
columns=["1d", "usd", "country"], # aggregation here

filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return df
)

usd by country(
data=bauplan.Model("euro selection™)

filtering here
return a dn'[;afr

wf U W1 T e Wl WG

me

el Il

return _df

New programming model

Infra-as—-code

nlan.model () @bauplan.model(materialize=True)

@bau

@bauplan.python(
"3.11", "3.10",

pip={"pandas”: "1.5.3"}

@bauplan.python(

pip=1"pandas": "2.2"%
)
def euro_selection(
data=bauplan.Model (

"transactions",
columns=["1d", "usd", "country"], # aggregation here

filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return df
)

usd by country(
data=bauplan.Model("euro selection™)

filtering here
return a dataframe
return _df

New programming model

/O chaining
baupy

nlan.model () @bauplan.model(materialize=True)

@bau
@bauplan.python(

@bauplan.python(
"3.11", "3.10",

pip={"pandas”: "1.5.3"}

pip=1"pandas": "2.2"%

)
<Cifleuro_selection[l usd_by_country (
SEYEE EO A E M e[@curo_selection

data=bauplan.Model (

"transactions",
columns=["1d", "usd", "country"], # aggregation here

filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return df
)

filtering here
return a dataframe
return _df

New programming model

User code here!

@bauplan.model(materialize=True)
@bauplan.python(

@bauplan.model ()

@bauplan.python(
"3.11", "3.10",

"2.2"¢ pip={"pandas": "1.5.3"}

pip=1"pandas":
)
def euro_selection(
data=bauplan.Model (

"transactions",
columns=["1d", "usd", "country"], # aggregation here

filter="eventTime BETWEEN 2023-01-01 AND # return a dataframe
2023-02-01" return df
)

usd by country(
data=bauplan.Model("euro selection™)

filtering here
return a dataframe
return _df

New runtime

we can’tjust “run user functions”, which
IS a challenge and opportunity

pauplanrun =

plan

+
environment
+

_ datamovement

/

Planning

USER CODE PLATFORM CODE

[bau.py

@bauplan.model ()
@bauplan.python(

”3 .11” | _
pip=1"pandas": "2.2"%

) docer

def euro selection(

data=bauplan.Model (
"transactions",
columns=["1d", "usd", "country"],
filter="eventTime BETWEEN 2023-01-01 AND
2023-02-01"

)

) :

filtering here
return a dataframe
return _dtf

Planning

g . '. , .
s S
4 s y \
1o d Ve
F ';' 4 4 ’ ' P/
; 4 '/ E / 4 v

V4 g 7
y 7 4/ /4) ,///— / |
& £ s ' *

N\ / s 7/ s ~ 4 .

Physical

APACHE APACHE s

.. ARROW ARROW /

» »

CDMS@VLDB2025: Daglakehouse planning with an ephemeral and embedded graph database

Environment

@bauplan.python(

)

||3.11|| ,

pip=1"pandas"”:

"2.2"%

Dependency
graph

Packaﬂe 1.O

Panhdas 2.2

planner

Packaﬂe 2.

- Packaae 2.0

pauplan
cloud

Environment

@bauplan.python(

)

||3.11|| ,

pip=1"pandas"”:

"2.2"%

planner

/

Paondas 2.2
Dependency |
g ra ph Packaﬂe 1.O Packaﬂe 2| Packaae 2.0
worker
\
Install to ... | Pandas 2.2 |
@ Package 1.O Package 2] | Packaﬁe 2.0

%

J

pauplan
cloud

customer
cloud

Environment

@bauplan.python(

)

||3.11|| ’

pip=1"pandas”:

"2.2"%

Pondas 22 |« ‘

planner

/

Dependency
g ra ph Packaae 1.O Packaﬂe 2| Packaae 2.0
worker
\
|nsta” to .. ‘ Pondas 22 = ‘
@ Package 1.0 Package 2| [Packaﬁe 2.0

/

user code

&
mounted packages

v

pauplan
cloud

customer
cloud

Environment: assemble, don’t buila

Table 2: Time to add Prophet to a serverless DAG

| NO Docker, NO bandwidth -
pottlenecks, NO ECR update Task Seconds

AWS Lambda*
Update ECR container and function 130 (80 + 50)

| Functions are ephemeral: no
Ifecycle management.

Snowpark
| Addlng d package Is 15 x Update Snowpark container 35
faster than AWS Lambda bauplan

Update runtime 5/ 0 (cache)

CDMS@VLDB2025 The Deconstructed Warehouse: an Ephemeral Query Engine Design for Apache Iceberg

Data movement: Arrow everywhere + zero-copy

data=bauplan.Model(
"transactions",

columns=["1d", "usd", "country"],
filter="..."

ARRO w>>>

| Acrossworkers, an Arrow
stream s as fast aslocal
parquet files (B)

Node 1: Intermediate Data: Node 2:
‘ Within a worker, tables can Parent Address Space In-Memory FS Child Address Space
obe zero-copy shared Al @———— N

between functions (C) [:]
B

| RQ:isDfeasible?

Figure 1: Communication: Degrees of Zero Copy

Data movement: Arrow everywhere + zero-copy

Table 3: Reading a dataframe from a parent (c5.9xlarge), avg.
(SD) over 5 trials

10M rows (6 GB) | 50M rows (30 GB)

Parquet file in S3 1.26 (0.14) 6.14 (0.98)
Parquet file on SSD 0.92 (0.09) 4.37 (0.15)
Arrow Flight 0.96 (0.01) 4.69 (0.01)

Arrow IPC 0.01 (0.00) 0.03 (0.01)

|EEE BIG DATA 2024: Faas and Furious: abstraction and differential caching for efficient data pre-processing

Scans do notrepeat themselves, but they oftenrhyme

Logical representation

c1 c2 3 c1 c3 c2
Differential cache: vait | vai2 | vaia it |vms | ™
| U1:“SELECTc]1,c2,c3FROMt WHERE il R
eventlime BETWEEN 2023-01-01AND Differential scan
20235-02-01" c1 €2 3 c1 c3 C2
© vall val2 | val3 vall2 | val32

| U2: “SELECTcl1,c3..BETWEEN
2023-01-0TAND 2023-05-01"

Physical representation

| UT:“SELECTc2..BETWEEN 2023-01-0T1

C1 C2 C3 C1 C3 C2
AND 2023-01-02"
vall val2 val3 val1 val3 val2
vali12 val32

|EEE BIG DATA 2024: Faas and Furious: abstraction and differential caching for efficient data pre-processing

https://arxiv.org/pdf/2411.08203

We barely scratched the surface!

@ Script everything: “devOps” = Python

1 1mport bauplan 1 1mport bauplan

2 /

3 client = bauplan.Client() 3 @bauplan.model ()

4 4 @bauplan.python(=1 'pandas': '2.2.0"'%)
5 for 1, agent 1n enumerate(agents): 5 def clean dataset(

5 agent _branch = client.create _data branch(5 input_table="nyc taxi’,

7 =f"31} agent", / columns=[coll, 'col2"']

3 ='main’ S filter="datetime ='2022-12-15"
9) 9)
10 run_state = client.run(10 import pandas as pd
11 =my_pipeline, 11 return clean_dataset
12 =agent_branch 12
13) 13
14 14 @bauplan.model ()

15 15 @bauplan.python(=1torch: '2.6.0'})

16 client.merge data_branch(16 def train _model(input_table='clean _dataset)):
17 =my_best _branch, 17 import torch

18 ='main’ 18 return predictions

19) 19

20

@) True zero-copy and function scheduling

Underreview

v2 [cs.OS] 13 May 2025

Zerrow: True Zero-Copy Arrow Pipelines in Bauplan

Yifan Dai*, Jacopo Tagliabue*, Andrea Arpaci-Dusseau®,
Remzi Arpaci-Dusseau™, Tyler R. Caraza-Harter™

* University of Wisconsin—-Madison, * Bauplan Labs

Abstract. Bauplan is a FaaS-based lakehouse specifically
built for data pipelines: its execution engine uses Apache Ar-
row for data passing between the nodes in the DAG. While
Arrow is known as the “zero copy format”, in practice, lim-
ited Linux kernel support for shared memory makes it dif-
ficult to avoid copying entirely. In this work, we introduce
several new techniques to eliminate nearly all copying from
pipelines: in particular, we implement a new kernel mod-
ule that performs de-anonymization, thus eliminating a copy
to intermediate data. We conclude by sharing our prelimi-
nary evaluation on different workloads types, as well as dis-
cussing our plan for future improvements.

1 Introduction

Data pipelines are a popular programming paradigm for data
analysis and machine-learning workloads. Data pipelines
are frequently implemented as DAGs (Directed Acyclic
Graphs), where each node of the DAG describes a transfor-
mation to perform on the data [2, 22, 26, 37]. Given fine-
grained nodes, efficient communication between nodes is es-
pecially important for good performance [9, 20, 36]. Much
work has addressed how to efficiently communicate between

VLDB 2025

9 May 2025

be mapped by multiple downstream nodes. Unfortunately,
simply using Arrow for inter-node communication does not
eliminate several sources of copying and duplication in data
pipelines. First, many tools and libraries that return Arrow
data allocate space with malloc, which uses anonymously
mapped memory without a backing file; operating systems
(including Linux) do not typically support sharing of anony-
mous memory, so unless all libraries in the Arrow ecosystem
are rewritten to use shared memory, a copy to shared memory
is necessary. Second, DAG nodes must perform copies when
Arrow output overlaps with Arrow input (e.g., the node adds
a column to an input table), as the existing Arrow IPC pro-
tocol does not provide a way to identify or reference such
overlap. Finally, when independent DAGs deserialize the
same data from on-disk formats (e.g., Parquet files) to Ar-
row, different processes contain identical copies of Arrow
data.

In pursuit of “true zero-copy” in a data DAG, we introduce
Zerrow, an experimental system focused on 1) our new kernel
support for sharing anonymous memory and ii) our new ex-
tended Arrow IPC protocol. Zerrow introduces several new
techniques. First, Zerrow introduces de-anonymization; our

Eudoxia: a FaaS scheduling simulator for the composable

lakehouse
Tapan Srivastava’ Jacopo Tagliabue® Ciro Greco
tapansriv@uchicago.edu jacopo.tagliabue@bauplanlabs.com ciro.greco@bauplanlabs.com
University of Chicago Bauplan Labs Bauplan Labs
Chicago, Illinois, USA New York, USA New York, USA

ABSTRACT

Due to the variety of its target use cases and the large API surface
area to cover, a data lakehouse (DLH) is a natural candidate for
a composable data system. Bauplan is a composable DLH built
on “spare data parts” and a unified Function-as-a-Service (FaaS)
runtime for SQL queries and Python pipelines. While Faa$ simplifies
both building and using the system, it introduces novel challenges
in scheduling and optimization of data workloads. In this work,
starting from the programming model of the composable DLH,
we characterize the underlying scheduling problem and motivate

data lake and warehouse, such as cheap and durable foundation
through object storage, compute decoupling, multi-language sup-
port, unified table semantics, and governance [19].

The breadth of DLH use cases makes it a natural target for the
philosophy of composable data systems [23]. In this spirit, Bauplan
is a DLH built from “spare parts” [31]: while presenting to users a
unified API for assets and compute [30], the system is built from
modularized components that reuse existing data tools through
novel interfaces: e.g. Arrow fragments for differential caching [29],
Kuzu for DAG planning [18], DuckDB as SQL engine [24], Arrow

D) BEER ERTURY o hEPOTRRRS, || Sy R el P |

Zerrow:. "true” zero-copy Arrow through
kernel hacking

Eudoxia: FaaS simulator forlakehouse
scheduling policies

How much “Git” isin Git-for-data?

Git for Data: Formal Semantics of Branching,
Merging, and Rollbacks (Part 1)

How formal methods help ensure safe, reproducible workflows Iin data
feature_2_branch akehouses

CREATEB

CREATET

<> feature_branch)—‘
L~ |

s e) *—=9

@) How much

"We have discovered a truly marvelous proof of this,

feature_branch

$modellnputs: 1
$modelOQutputs: 1
$next: 1

$next: 3

$prev: 1

$prev: 3
$runModels: 1
columns: 2
commit: 1
function: 1
input: 1

mode: 1
models: 1
output: 1
pipeline: 1

rows: 1

tables: 1

values: 1

TTIMAM I MmsAy WA

Y ATME AR

“database” |

>bauplan run

Git-for-data?

u tmp_branch) o l‘— m ‘\
)

narrow to contain”

Run

($successfulReadRun_r)

pipelife
(ke ol
. - . '
Pipeline SrunModels [0] :gfd/MamO }
____r___
modely[0] :commit
|
| -]
Read I gfd/Commit0 !
I
Model ($first) :(sconsistentStates) :
| S — r ————— -
ltables [gfd/Ta
$inext 'l
Sprev [
. Append Populate gfd/Snapshot0
Function ($first) ($last) Droe ($existingSnapshots)
rev next
columns
$hext Snekt/ Sprev
$prev
Replace
gfd/Table ($last) Create gfd /Colur

$modellnputs: 1
$modelOutputs: 1
$next: 1

$next: 3

$prev: 1

$prev: 3
$runModels: 1
branch: 1
columns: 2
commit: 1
function: 1
input: 1

mode: 1
models: 1
nextStep: 1
output: 1
pipeline: 1
rows: 1

status: 1

tables: 1

values: 1

Run
($activeRuns, $successfulReadRun_r)

Function $njodellnputs
$modelQutputs
outpu
put
gfd/Table

\Qnodo

~

L \S

~

yranch

which this slide s too

i
| ofd/Commit0 |
| ($ consistentStates) |

| S —

\ "
\ .
N S,
S
Read I ;
($first) :gfd/Maan :
————— X——l
$runModels [0] \\\
next
Sprev
Drop
Append Populate
($first) ($last) $ngxt
Sprev
rev
next Sne
Sprev
R(esﬂzf)e Create

——--\—-———-l

\

\tables [gfd,
\
\

R

gfd/Snapsh
($existingSnap

\

Want to know more?

20235
o CDMS@VLDB 2023
2024

o SIGMOD 2024
o MIDDLEWARE 2024 (with UMadison-Wisconsin)
e BIG DATA 2024

2025

o UNDERREVIEW 2025 (with UMadison-Wisconsin)
e CODMS@VLDB 2025 (withUChicago)

https://arxiv.org/pdf/2308.05368
https://arxiv.org/pdf/2404.13682
https://arxiv.org/pdf/2410.17465
https://arxiv.org/abs/2411.08203
https://arxiv.org/abs/2504.06151
https://arxiv.org/abs/2505.13750

| (Most) lakehouse use cases can be served by
functions
| Co-designing abstractions + FaaS leadstoa

simple, powerful system

| Want to chat?
Jacopo.tagliabue@bauplaniabs.com

| AreyoucomingtoVLDB? Come to our
Keynote: we are organizing a dinner!

