
Presenter: Yuanyuan Tian

Gray Systems Lab (GSL), Microsoft

GSL: Rana Alotaibi*, Stefan Grafberger*, Nicolas Bruno, Brian Kroth, Sergiy Matusevych, Ashvin Agrawal, Carlo Curino
Fabric DW: Jesus Camacho-Rodríguez, Cesar Galindo-Legaria, Milind Joshi, Milan Potocnik, Beysim Sezgin, Xiaoyu Li
Fabric Spark: Mahesh Behera, Ashit Gosalia

Industry Trends

Demand: Fragmentation → Convergence

Microsoft Fabric
• Shared Data on Lake
• Shared Compute Resource
• Shared Governance Experience

Industry Trends

Microsoft Fabric
• Shared Data on Lake
• Shared Compute Resource
• Shared Governance Experience

Demand: Fragmentation → Convergence

Industry Trends

Microsoft Fabric
• Shared Data on Lake
• Shared Compute Resource
• Shared Governance Experience

Demand: Fragmentation → Convergence

Architecture: Monolithic → Composable

• Cloud DB: separation of storage from compute
• Open standards

• Parquet, Arrow, Substrait
• OSS system-building libraries

• Calcite, Orca, Velox, Datafusion

Industry Trends

Microsoft Fabric
• Shared Data on Lake
• Shared Compute Resource
• Shared Governance Experience

Demand: Fragmentation → Convergence

Architecture: Monolithic → Composable

• Cloud DB: separation of storage from compute
• Open standards

• Parquet, Arrow, Substrait
• OSS system-building libraries

• Calcite, Orca, Velox, Datafusion

Some Relevant Context

Relational DB & QO History

1970s 1980s 1990s 2000s 2010s 2020s

Relational
DB

Data Warehouse
(DW)

MPP DB Big Data Cloud DB Data Lake Data LakeHouse

System R

Starburst

Volcano
Cascades

SQL Server
QO

SCOPE QO

PDW QO Synapse
DW QO

Fabric DW
QO1989

2010 2016 2023

2008
MPP DW Cloud DW LakeHouse

Big Data

QO Evolution in Microsoft

Test-of-Time QO
Frameworks

QO Status Quo: Reinventing Wheels
A proliferation of analytical engines with their own QOs following similar patterns

• Same relational algebra, similar search spaces, and same stages

Parsing/
Algebrization

Simplification/
Normalization

Exploration
(CBO)

Post-
optimization

• AST → algrebraic tree

• Name resolution

• Type inference

• Iteratively apply

transformation rules

• E.g. filter push-down,

constant folding,

decorrelation, etc

• Cost-based exploration

• search space

• enumeration strategy

• DP or MEMO

• cost model

• Peephole transformations

on the final plan

A Practical QO Trend: Convergence of QO with WO
(Workload Optimization)

• Adding workload insight into QO
• SQL Server

• Query Store: monitors the
performance of query to
detect plan changes and
regressions

• Oracle:
• SQL Plan Management:

keep track of a set of valid
plans for a query

WO

a set of queries

optimized
workload

QO

query

optimized
plan

memoryless

QO

query

optimized
plan

Query
Store

Observability + Memory
• Past queries, plans,

and runtime statistics [1] Yuanyuan Tian 2025. Query Optimization in the Wild: Realities and Trends. In ArXiv.

About Learned QO

• All learned QO approaches are essentially WO
• Rely on the fact: Queries are often recurrent and similar
• Learning from the past to improve the future

Industry

Learned QO

Research

Complexity

Explainability

Debuggability

Regression

Training & inference Cost

“Pacemaker” is easier to adopt than a “heart transplant”!

Coming Back to QOaaS

QOaaS

Focus: for analytical engines in a unified Lakehouse
ecosystem, e.g. Microsoft Fabric

Features Custom QO QO as a Library
(Calcite, Orca) QOaaS

Innovation speed ✓ ✓
Engineering
efficiency ✓ ✓
New engine time-
to-market ✓ ✓

QO scalability ✓
Workload
Observability ✓
Workload
Optimization ✓
Cross-engine
optimization ✓

- Independent QO service interacting with multiple
engines over RPC

Steps Towards QOaaS

• Building on our own experience
• Developing Calcite
• Evolving Cascades framework within Microsoft

• Initial focus
• Two engines: DW and Spark on Fabric Ecosystem
• Adapting UQO (Fabric DW QO) to QOaaS

• Key Challenges:
• CH1: Exchanging plans in and out of QO
• CH2: Adapting UQO for different engines
• CH3: Adjusting the cost model

UQO

CH1: Standardizing Plan Specification

• Substrait: open-source, cross-language plan specification for relational algebra
• Various serialization formats
• Extensibility for custom operations
• Ecosystem for libraries and toolings

• Making Substrait as the cross-engine plan specification on Fabric
• Ongoing collaborative effort across GSL, DW, Spark, and Power BI
• Current coverage: TPC-H, TPC-DS, internal workloads

CH2: Can UQO optimize Spark Queries?

Spark QO

• Mostly non-CBO
• CBO only applies to join ordering and

broadcast-vs-shuffle join decision

UQO

• Full-stack Cascades framework with
255 CBO rules

• Sophisticated cost model

Naïve replacement won’t work!

• Physical Operator Gaps
• Some Fabric DW physical operators are

unsupported in Spark
• Example: nested loop join

• Feature Support Disparities
• UQO cannot fully exploit Spark-specific

features
• Example: Hive-style partitioning

A Simple QOaaS Prototype

• UQO*
• Not generating unsupported operators in Spark

• Spark QO*
• Only include Spark specific optimization rules lacking in UQO

UQO* Spark QO*

QOaaS-v1
logical optimization further optimization + physical

implementation

QOaaS-v2
logical + physical

optimization
further optimization + physical
implementation based on hints

from UQO*

Performance Study

0

1

2

3

4

5

6

5 Joins 10 Joins 15 Joins 20 Joins 25 Joins 30 Joins 35 Joins 40 Joins

N
O

R
M

A
IL

IZ
ED

 T
IM

E

Spark QO QOaaS-v1 QOaaS-v2

MSSales Workload
• 627 tables on OneLake (5TB, delta parquet)
• Highly templatized queries, join heavy

Takeaway
• UQO-based QOaaS looks promising!
• QOaas-v2 performs better than QOaaS-v1

TPC-H SF1000 (1TB)

• QOaaS-v2 is comparable to SparkQO

• Average diff <6%

• Q5 is 1.5x slow

• Not fully utilizing Bloom filters

• Adding optimizations retroactively is suboptimal,
all optimization opportunities should be
explored!

CH3: Recalibrating and Tuning the Cost Model

• A fixed cost model is unlikely to work for QOaaS

• 1st attempt: changing cost model without
rewrite
• Recalibrating and tuning constant parameters in

UQO’s cost formula
• MLOS [2] : OSS ML-powered tuner

60 parameters

[2] MLOS. https://github.com/microsoft/MLOS

Performance Study
MSSales Workload

Observation
• Really encouraging results for cost model tuning!
• Tuned parameters are not transferrable!

• Overfitting to a workload → a benchmark workload with coverage of all operators
• Interplay with cardinality estimation errors → injecting true cardinality leveraging prior work [3]

TPC-H

[3] Kukjin Lee, et al. 2023. Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft SQL Server. In PVLDB.

Key Lessons
Learned

A standard plan specification is essential for
QOaaS

QOaaS should explore all possible optimization
opportunities

QOaaS needs to generate engine-specific costs

QOaaS should allow workload-based optimization
(e.g. ML-based QO enhancement)

Fiddling with a production-level customized QO for
QOaaS requires significant engineering effort

Time for a new design?

A QOaaS Proposal

Simplification

unoptimized logical plan

CBO Exploration
Rules

Post Optimization

optimized physical plan

Lo
gi

ca
l O

pe
ra

to
rs

 &
 P

hy
si

ca
l O

p
er

at
or

s

Card. Estimation

Cost Model

M
et

ad
at

a
sc

he
m

a
&

 s
ta

ts

QOaaS

Execution Runtimes

Substrait

Substrait

Rules
Core Component

• Standard plan specification

• Modular, extensible components

• Adding engines-property to

operators and rules

• New cross-engine data exchange

operator

• Engines-property is enforced

during optimization

• Cost model takes target engine as

an additional input

optimized logical plan

optimized logical plan
w physical annotation

A QOaaS Proposal

Simplification

unoptimized logical plan

CBO Exploration
Rules

Post Optimization

optimized logical plan

optimized logical plan
w physical annotation

optimized physical plan

Lo
gi

ca
l O

pe
ra

to
rs

 &
 P

hy
si

ca
l O

p
er

at
or

s

Card. Estimation

Cost Model

M
et

ad
at

a
sc

he
m

a
&

 s
ta

ts

QOaaS

Execution Runtimes

Substrait

Substrait

Rules

Servification

• Dedicated resources for QOaaS

• Elastic scale up and out

independently

• Can run different versions of QO

simultaneously

• Easy deployment and testing

A QOaaS Proposal

Simplification

unoptimized logical plan

CBO Exploration
Rules

Post Optimization

optimized logical plan

optimized logical plan
w physical annotation

optimized physical plan

Lo
gi

ca
l O

pe
ra

to
rs

 &
 P

hy
si

ca
l O

p
er

at
or

s

Card. Estimation

Cost Model

Config/Action
StoreM

et
ad

at
a

sc
he

m
a

&
 s

ta
ts

QOaaS

Execution Runtimes

External Tuner
Plugin

Substrait

Substrait

Rules Query Insight
Store

Observability

• Automatically capturing queries,

plans, and runtime statistics

Pluggable External Service

• e.g. MV/index selection, ML-based

QO enhancement

• APIs to read info from Query

Insight Store

• APIs to store information into the

Config/Action Store

Feedback to QO

• Enhancement from the stored info

Challenges
and Risks

• QO software complexity
• Learning curve for QO developers
• Coordination across teams
• Communication overhead

between engines and QO
• Innovation hurdle

Open
Discussion and
Debate

Is QOaaS a fantasy?

Will it work?

	Default Section
	Slide 1: Towards Query Optimizer as a Service (QOaaS) In a Unified Lakehouse Ecosystem:
	Slide 2: Industry Trends
	Slide 3: Industry Trends
	Slide 4: Industry Trends
	Slide 5: Industry Trends
	Slide 6: Some Relevant Context
	Slide 7: Relational DB & QO History
	Slide 8: QO Status Quo: Reinventing Wheels
	Slide 9: A Practical QO Trend: Convergence of QO with WO (Workload Optimization)
	Slide 10: About Learned QO
	Slide 11: Coming Back to QOaaS
	Slide 13: QOaaS
	Slide 14: Steps Towards QOaaS
	Slide 15: CH1: Standardizing Plan Specification
	Slide 16: CH2: Can UQO optimize Spark Queries?
	Slide 17: A Simple QOaaS Prototype
	Slide 18: Performance Study
	Slide 19: CH3: Recalibrating and Tuning the Cost Model
	Slide 20: Performance Study
	Slide 21: Key Lessons Learned
	Slide 22: A QOaaS Proposal
	Slide 23: A QOaaS Proposal
	Slide 24: A QOaaS Proposal
	Slide 25: Challenges and Risks
	Slide 26: Open Discussion and Debate

