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Some Relevant Context



Relational DB & QO History
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QO Status Quo: Reinventing Wheels
A proliferation of analytical engines with their own QOs following similar patterns

• Same relational algebra, similar search spaces, and same stages

Parsing/
Algebrization

Simplification/
Normalization

Exploration 
(CBO)

Post-
optimization

• AST → algrebraic tree

• Name resolution

• Type inference

• Iteratively apply 

transformation rules

• E.g. filter push-down, 

constant folding, 

decorrelation, etc

• Cost-based exploration

• search space

• enumeration strategy 

• DP or MEMO

• cost model

• Peephole transformations 

on the final plan



A Practical QO Trend: Convergence of QO with WO 
(Workload Optimization)

• Adding workload insight into QO
• SQL Server

• Query Store: monitors the 
performance of query to 
detect plan changes and 
regressions 

• Oracle:
• SQL Plan Management: 

keep track of a set of valid 
plans for a query

WO

a set of queries

optimized 
workload

QO

query

optimized 
plan

memoryless

QO

query

optimized 
plan

Query 
Store

Observability + Memory
• Past queries, plans, 

and runtime statistics [1] Yuanyuan Tian 2025. Query Optimization in the Wild: Realities and Trends. In ArXiv.



About Learned QO

• All learned QO approaches are essentially WO
• Rely on the fact: Queries are often recurrent and similar
• Learning from the past to improve the future

Industry

Learned QO 

Research

Complexity 

Explainability 

Debuggability

Regression

Training & inference Cost

“Pacemaker” is easier to adopt than a “heart transplant”!



Coming Back to QOaaS



QOaaS

Focus: for analytical engines in a unified Lakehouse 
ecosystem, e.g. Microsoft Fabric

Features Custom QO QO as a Library
(Calcite, Orca) QOaaS

Innovation speed ✓ ✓
Engineering 
efficiency ✓ ✓
New engine time-
to-market ✓ ✓

QO scalability ✓
Workload 
Observability ✓
Workload 
Optimization ✓
Cross-engine 
optimization ✓

- Independent QO service interacting with multiple 
engines over RPC



Steps Towards QOaaS

• Building on our own experience
• Developing Calcite
• Evolving Cascades framework within Microsoft

• Initial focus
• Two engines: DW and Spark on Fabric Ecosystem
• Adapting UQO (Fabric DW QO) to QOaaS

• Key Challenges:
• CH1: Exchanging plans in and out of QO
• CH2: Adapting UQO for different engines
• CH3: Adjusting the cost model

UQO



CH1: Standardizing Plan Specification

• Substrait: open-source, cross-language plan specification for relational algebra
• Various serialization formats
• Extensibility for custom operations 
• Ecosystem for libraries and toolings

• Making Substrait as the cross-engine plan specification on Fabric
• Ongoing collaborative effort across GSL, DW, Spark, and Power BI
• Current coverage: TPC-H, TPC-DS, internal workloads



CH2: Can UQO optimize Spark Queries?

Spark QO

• Mostly non-CBO
• CBO only applies to join ordering and 

broadcast-vs-shuffle join decision

UQO

• Full-stack Cascades framework with 
255 CBO rules

• Sophisticated cost model

Naïve replacement won’t work!

• Physical Operator Gaps
• Some Fabric DW physical operators are 

unsupported in Spark
• Example: nested loop join

• Feature Support Disparities
• UQO cannot fully exploit Spark-specific 

features
• Example: Hive-style partitioning



A Simple QOaaS Prototype

• UQO*
• Not generating unsupported operators in Spark

• Spark QO*
• Only include Spark specific optimization rules lacking in UQO

UQO* Spark QO*

QOaaS-v1
logical optimization further optimization  + physical 

implementation

QOaaS-v2
logical + physical 

optimization
further optimization  + physical 
implementation based on hints 

from UQO*



Performance Study
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MSSales Workload
• 627 tables on OneLake (5TB, delta parquet)
• Highly templatized queries, join heavy

Takeaway
• UQO-based QOaaS looks promising!
• QOaas-v2 performs better than QOaaS-v1

TPC-H SF1000 (1TB)

• QOaaS-v2 is comparable to SparkQO 

• Average diff <6%

• Q5 is 1.5x slow

• Not fully utilizing Bloom filters

• Adding optimizations retroactively is suboptimal, 
all optimization opportunities should be 
explored!



CH3: Recalibrating and Tuning the Cost Model

• A fixed cost model is unlikely to work for QOaaS

• 1st  attempt: changing cost model without 
rewrite
• Recalibrating and tuning constant parameters in 

UQO’s cost formula
• MLOS [2] : OSS ML-powered tuner

60 parameters

[2] MLOS. https://github.com/microsoft/MLOS



Performance Study
MSSales Workload

Observation
• Really encouraging results for cost model tuning!
• Tuned parameters are not transferrable!

• Overfitting to a workload  → a benchmark workload with coverage of all operators
• Interplay with cardinality estimation errors → injecting true cardinality leveraging prior work [3]

TPC-H

[3] Kukjin Lee, et al. 2023. Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft SQL Server. In PVLDB.



Key Lessons 
Learned

A standard plan specification is essential for 
QOaaS

QOaaS should explore all possible optimization 
opportunities 

QOaaS needs to generate engine-specific costs

QOaaS should allow workload-based optimization 
(e.g. ML-based QO enhancement)

Fiddling with a production-level customized QO for 
QOaaS requires significant engineering effort

Time for a new design?



A QOaaS Proposal

Simplification

unoptimized logical plan

CBO Exploration
Rules

Post Optimization

optimized physical plan
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Execution Runtimes

Substrait

Substrait

Rules
Core Component

• Standard plan specification 

• Modular, extensible components

• Adding engines-property to 

operators and rules

• New cross-engine data exchange 

operator

• Engines-property is enforced 

during optimization

• Cost model takes target engine as 

an additional input

optimized logical plan

optimized logical plan 
w physical annotation
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Servification

• Dedicated resources for QOaaS

• Elastic scale up and out 

independently

• Can run different versions of QO 

simultaneously

• Easy deployment and testing
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External Tuner 
Plugin 

Substrait

Substrait

Rules Query Insight 
Store

Observability

• Automatically capturing queries, 

plans, and runtime statistics 

Pluggable External Service

• e.g. MV/index selection, ML-based 

QO enhancement

• APIs to read info from Query 

Insight Store

• APIs to  store information into the 

Config/Action Store

Feedback to QO

• Enhancement from the stored info 



Challenges 
and Risks

• QO software complexity
• Learning curve for QO developers
• Coordination across teams
• Communication overhead 

between engines and QO
• Innovation hurdle



Open 
Discussion and 
Debate

Is QOaaS a fantasy?

Will it work?
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