Can One QO Rule Them All?

Presenter: Yuanyuan Tian e
Gray Systems Lab (GSL), Microsoft

GSL: Rana Alotaibi*, Stefan Grafberger®, Nicolas Bruno, Brian Kroth, Sergiy Matusevych, Ashvin Agrawal, Carlo Curino
Fabric DW: Jesus Camacho-Rodriguez, Cesar Galindo-Legaria, Milind Joshi, Milan Potocnik, Beysim Sezgin, Xiaqyu Li
Fabric Spark: Mahesh Behera, Ashit Gosalia —

Industry Trends

-

Frontend
‘ Demand: Fragmentation = Convergence
Query

i i Optimi
Microsoft Fabric Fzérrc\))zer

 Shared Data on Lake
 Shared Compute Resource
 Shared Governance Experience

Execution
(Runtime)

Storage

Industry Trends

" Postgres

Frontend oy
‘ Demand: Fragmentation = Convergence l
Query
. . Optimi
Microsoft Fabric ‘;5"5,’9’ @
* Shared Data on Lake l
o Execution =
Shared Compute Resource (Runtime) »_JQ

 Shared Governance Experience

Industry Trends

‘ Demand: Fragmentation - Convergence

Microsoft Fabric

 Shared Data on Lake

 Shared Compute Resource
 Shared Governance Experience

Frontend

Optimizer

Execution
(Runtime)

One Lake ‘

‘ Architecture: Monolithic > Composable

Storage

* Cloud DB: separation of storage from compute
 Open standards

* Parquet, Arrow, Substrait
* OSS system-building libraries

* Calcite, Orca, Velox, Datafusion

Industry Trends

‘ Demand: Fragmentation - Convergence

Microsoft Fabric

 Shared Data on Lake

 Shared Compute Resource
 Shared Governance Experience

Frontend

Optimizer QO as a Service
(Q0)
L

Execution
(Runtime)

One Lake ‘

‘ Architecture: Monolithic > Composable

Storage

* Cloud DB: separation of storage from compute
 Open standards

* Parquet, Arrow, Substrait
* OSS system-building libraries

* Calcite, Orca, Velox, Datafusion

- Some Relevant Context

Relational DB & QO History

Relational Data Warehouse MPP DB Big Data Cloud DB Datalake DatalakeHouse
DB (DW)

9 @& @ ¥ o086
1970s 1980s 1990s 2000s 2010s

System R
Volcano
Test-of-Time QO Cascades
Frameworks Starburst
QO Evolution in Microsoft 2010 2016 2023
Synapse Fabric DW
S

MPP DW Cloud DW LakeHouse
2008

SCOPE QO

Big Data

QO Status Quo: Reinventing Wheels

A proliferation of analytical engines with their own QOs following similar patterns

 Same relational algebra, similar search spaces, and same stages

Parsing/

Algebrization

* AST - algrebraic tree
* Name resolution

* Type inference

N\

~

)

Simplification/
Normalization

* |teratively apply
transformation rules
* E.g.filter push-down,

constant folding,

decorrelation, etc

N\

~

/

Exploration
(CBO)

~

* Cost-based exploration
* search space
* enumeration strategy

* DP or MEMO

e cost model

N /

Post-
optimization

* Peephole transformations

on the final plan

N

/

A Practical QO Trend: Convergence of QO with WO
(Workload Optimization) auery asetof queries

* Adding workload insightinto QO

 SQL Server optimized optimized
* Query Store: monitors the plan workload
performance of query to
detect plan changes and
regressions

memoryless

« Oracle: query
 SQL Plan Management: l,
keep track of a set of valid
plans for a query QO

l Observability + Memory

optimized * Pastqueries, plans,
[1] Yuanyuan Tian 2025. Query Optimization in the Wild: Realities and Trends. In ArXiv. plan and runtime statistics

About Learned QO

* All learned QO approaches are essentially WO
* Rely on the fact: Queries are often recurrent and similar
* Learning from the past to improve the future

“Pacemaker” is easier to adopt than a “heart transplant”!

Complexity

Explainability
Debuggability
Regression

Training & inference Cost

- .0
oy
&=ay

)ming Back to QOaa

QOaaS

- Independent QO service interacting with multiple
engines over RPC

Focus: for analytical engines in a unified Lakehouse
ecosystem, e.g. Microsoft Fabric

Innovation speed
Engineering
efficiency

New engine time-
to-market

QO scalability
Workload
Observability

Workload
Optimization

Cross-engine
optimization

Steps Towards QOaaS

QO Evolution in Microsoft

* Building on our own experience - Fabric DW '
. 1589 DW QO Qo
* Developing Calcite s
* Evolving Cascades framework within Microsoft
SCOPE QO
* |nitial focus Big Data UuQo
* Two engines: DW and Spark on Fabric Ecosystem

* Adapting UQO (Fabric DW QO) to QOaaS

* Key Challenges:
* CH1: Exchanging plans in and out of QO
e CH2: Adapting UQO for different engines
* CH3: Adjusting the cost model

I}| CH1: Standardizing Plan Specification

* Substrait: open-source, cross-language plan specification for relational algebra

* Various serialization formats :
o . Substrait
* Extensibility for custom operations

* Ecosystem for libraries and toolings

* Making Substrait as the cross-engine plan specification on Fabric
* Ongoing collaborative effort across GSL, DW, Spark, and Power Bl
* Current coverage: TPC-H, TPC-DS, internal workloads

CH2: Can UQO optimize Spark Queries?

Spark QO UQo
e Mostly non-CBO e Full-stack Cascades framework with
e CBO only applies to join ordering and 255 CBOrules
broadcast-vs-shuffle join decision e Sophisticated cost model

Naive replacement won’t work!

* Physical Operator Gaps * Feature Support Disparities
 Some Fabric DW physical operators are * UQO cannot fully exploit Spark-specific
unsupported in Spark features

* Example: nested loop join * Example: Hive-style partitioning

A Simple QOaaS Prototype

Spark Query

Spark QO* « UQO*

—_— Substrait

* Not generating unsupported operators in Spark

Logical Optimization ” Initial unoptimized
(Subset of rules logical plan o Sp ark QO*
further optimized *
logical plan uQo * Onlyinclude Spark specific optimization rules lacking in UQO
sttt sl Subset of rules «=
. Substrait =
Physical Planni -_ UQo* Spark QO*
Optimized logical plan w/wo g g -
Optimized
ph:;ig:lz:lan physical hints -§ E logical optimization further optimization + physical
c » : k: E QOaaS-v1 implementation
Ty m
- If ‘ 'E logical + physical further optimization + physical
QOaaS-v2 optimization implementation based on hints

OnelLake from UQO*

Performance Study

MSSales Workload TPC-H SF1000 (1TB)
* 627 tables on OnelLake (5TB, delta parquet)
* Highly templatized queries, join heavy

° * QOaaS-v2 is comparable to SparkQO
* Average diff <6%
* Q5is1.5xslow

NORMAILIZED TIME
w

* Not fully utilizing Bloom filters

5Joins 10Joins 15Joins 20Joins 25Joins 30Joins 35Joins 40 Joins

@ Spark QO QOaaS-v1 mQOaaS-v2

Takeaway * Adding optimizations retroactively is suboptimal,

« UQO-based QOaaS looks promising! all optimization opportunities should be
* QOaas-v2 performs better than QOaaS-v1 explored!

CH3: Recalibrating and Tuning the Cost Model

60 parameters

* Afixed cost modelis unlikely to work for QOaaS

e 15t attempt: changing cost model without
rewrite

* Recalibrating and tuning constant parameters in
UQQO’s cost formula

* MLOS [2]: OSS ML-powered tuner

u BatchExecutionCost E CpuCost u ExchangeCost
m HashJoinCost m |OCost m PredicateCost
© RowFacorCost m StartupCost

[2]1 MLOS. https://github.com/microsoft/MLOS

NORMALIZED TIME
O B N WA OO N ®

Performance Study

MSSales Workload TPC-H
7 7 7 [
|.u5
=
7 77, Ed
g,
? B : 7
7 A 7 =
/ 2w 70
- m 7m 7l Vm I l.- i 0 %- é
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 QiI5 SF-10 SF-30
= Default Config m Tuned Config ¥l Defaul Config ® Tuned Config
Observation

* Really encouraging results for cost model tuning!

* Tuned parameters are not transferrable!
* Overfitting to a workload - a benchmark workload with coverage of all operators
* Interplay with cardinality estimation errors = injecting true cardinality leveraging prior work [3]

[3] Kukjin Lee, et al. 2023. Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft SQL Server. In PVLDB.

A standard plan specification is essential for
QOaaS

QOaaS should explore all possible optimization
opportunities

Key Lessons
Learned

QOaaS needs to generate engine-specific costs

QOaaS should allow workload-based optimization

Time for a new design? (e.g. ML-based QO enhancement)

Fiddling with a production-level customized QO for

QOaaS requires significant engineering effort

unoptimized logical plan A QOaaS PrOposal

QOaaS

/ Simplification \ Core Component

* Standard plan specification

optimized tgical plan * Modular, extensible components

CBO Exploration * Adding engines-property to

operators and rules

Card. Estimation * New cross-engine data exchange

Cost Model Operator

Logical Operators & Physical Operators

optimized logical plan * Engines-property is enforced
w physicalannotation . o
during optimization

Post Optimization _
 Cost modeltakes target engine as

optimized physical plan an additional input

Execution Runtimes

unoptimized logical plan A QOaaS Proposal

_\QOaaS

Simplification

///

optimized tgical plan Servification

 Dedicated resources for QOaaS

CBO Exploration

* Elastic scale up and out

Card. Estimation independently

Cost Model e Canrundifferent versions of QO

Logical Operators & Physical Operators

optimized logical plan simultaneously
w physicallannotation

 Easydeployment and testing

Post Optimization

optimized physical plan

Execution Runtimes

unoptimized logical plan A QOaaS PrOposal

QOaaS

Observability

/ Simplification * Automatically capturing queries,

Query Insight) o
Store plans, and runtime statistics

?

optimized logical plan
External Tuner Pluggable External Service
Plugin

CBO Exploration

* e.g. MV/index selection, ML-based

QO enhancement

A

Card. Estimation

* APIsto read info from Query

Cost Model

Insight Store

Logical Operators & Physical Operators

w physicallannotation APlsto store information into the

optimized'tgical plan

optimized physical plan Feedback to QO

Execution Runtimes * Enhancement from the stored info

Challenges
and Risks

* QO software complexity
Learning curve for QO developers
Coordination across teams

Communication overhead
between engines and QO

Innovation hurdle

Open
Discussion and
Debate

Is QOaaS a fantasy?
Will it work?

Can OF

	Default Section
	Slide 1: Towards Query Optimizer as a Service (QOaaS) In a Unified Lakehouse Ecosystem:
	Slide 2: Industry Trends
	Slide 3: Industry Trends
	Slide 4: Industry Trends
	Slide 5: Industry Trends
	Slide 6: Some Relevant Context
	Slide 7: Relational DB & QO History
	Slide 8: QO Status Quo: Reinventing Wheels
	Slide 9: A Practical QO Trend: Convergence of QO with WO (Workload Optimization)
	Slide 10: About Learned QO
	Slide 11: Coming Back to QOaaS
	Slide 13: QOaaS
	Slide 14: Steps Towards QOaaS
	Slide 15: CH1: Standardizing Plan Specification
	Slide 16: CH2: Can UQO optimize Spark Queries?
	Slide 17: A Simple QOaaS Prototype
	Slide 18: Performance Study
	Slide 19: CH3: Recalibrating and Tuning the Cost Model
	Slide 20: Performance Study
	Slide 21: Key Lessons Learned
	Slide 22: A QOaaS Proposal
	Slide 23: A QOaaS Proposal
	Slide 24: A QOaaS Proposal
	Slide 25: Challenges and Risks
	Slide 26: Open Discussion and Debate

