South Bay Systems meetup - Mountain View, CA - November 19, 2025

South Bay Systems: Morel / Query Optimization as a Service

Wednesday, November 19 6:00 PM - 8:00 PM
StarTree Inc. Mountain View, California

About Event

Welcome to another edition of South Bay Systems! This time we bring
you two wonderful talks: Julian Hyde will be speaking about Morel, a
new functional database query language in development, and Yuanyuan
Tian will be presenting the CIDR'25 paper on Query Optimization as a
Service.

Agenda

6:00 PM: Doors open, food and socializing
6:30 PM — 6:50 PM: Morel Talk

6:50 PM — 7:30 PM: QOaaS Talk

7:30 PM onward : Community socializing!

Food and beverages will be provided, courtesy of our hosts, StarTree.

Morel: A language for data

SQL excels at queries but struggles with streaming, incremental
computation, version control, refactoring, and modern development
workflows. Can we build a language that keeps SQL:s strengths while
addressing these limitations?

Morel combines functional programming with relational algebra to
create a language as powerful as SQL but capable of solving a wider
class of problems. This session introduces Morel and demonstrates how
it addresses challenges like query federation, SQL dialect translation,
streaming, and data engineering.

Speaker Bio

Julian Hyde is the author of Morel and creator of Apache Calcite, a
widely-used open source query planning engine. He has pioneered SQL
extensions for streaming and BI, and held senior engineering positions
at Google and Hortonworks.

1. Databases & programming languages

Data access (CRUD)

Create order 934
Retrieve order 934

Update order 934
7

Delete order 934

Database

Query language

Database

Query language Programming language

Python / Java / Rust + SQL

Database

Data language

Database

About me

SQLstream

Query the Future

dcalcite

Agenda

Databases & programming languages
Data language

Functional + relational

A high-level language

Best of both

Vi W N

2. Data language

What do we want from a data language?

1. Data "Hello, world!";
> val it = "Hello, world!" : string

[1, 2, 3];
> val it = [1,2,3] : int list

(3.14, true);
> val it = (3.14, true) : real * bool

{empno = 100, ename = "SCOTT", job = "MANAGER"};
> val it : {empno:int,ename:string, job:string}

val depts = |
{deptno = 10, dname = "SALES", emps = []},
{deptno = 20, dname = "MARKETING", emps = [
{empno = 100, ename "SCOTT", job = "MANAGER"},
{empno = 110, ename "OATES", job = "CLERK"}
1}
> val depts
: {deptno:int, dname:string,
emps:{empno:int, ename:string, job:string} list} list

What do we want from a data language?

1 Data substring ("abcde", 1, 2);
: > val it = "bc" : string
2. [Expressions 1 [1, 2, 3];

> val it = [2,3] : int list

from i in [1, 2, 3, 4, 5]
where i mod 2 = 1

yield i * i;

> val it = [1,9,25] : int list

fun categorize (x, y) =
case (x mod 2, y mod 2) of
(0, 0) "both even"
| (1, 1) "both odd"
| (-,) => "odd and even";
> val categorize = fn : int * int -> string

What do we want from a data language?

1. Data U S R R
> val it = fn : int -> int

2. Expressions map (fn x => x * x) [1, 2, 3, 4]
> val it = [1,4,9,16] : int list

3. Functions
fun factorial 1 1
| factorial n = n * (factorial (n - 1));
> val factorial fn : int -> int

What do we want from a data language?

Data
Expressions
Functions

Types

W N

type employee =
{empno:int, ename:string, is_mgr:bool,
mgrno:int option};

> type employee

datatype color = BLUE | GREEN | RED;
> datatype color = BLUE | GREEN | RED

datatype ‘a option = NONE | SOME of ‘a;
> datatype option

SOME "abc";
> val it = SOME “abc” : string option

NONE ;
> val it = NONE : ‘a option

3. Functional + relational

Relational algebra in a functional programming language

Relational algebra Relational operators as functions

U union union = fn : 'a list * 'a list -> 'a list

\ minus except = fn : 'a list * 'a list -> 'a list

N intersect intersect = fn : 'a list * 'a list -> 'a list
filter = fn : ('a -> bool) -> 'a list -> 'a list

o filter map = fn : ('a -> 'b) -> 'a list -> 'b list

IT project join = fn
e : 'a list * 'b 1list * ('a * 'b -> bool)
M join -> ('a * 'b) list

Chaining relational operators

from e in emps
order (e.deptno, DESC)
yield {e.name, namelLength = size(e.name), e.id, e.deptno}
where namelLength > 4
group deptno compute {c = count over (), s = sum over namelLength}
where s > 10
yield c + s;

> val it = [14] : int list

Chaining relational operators - step 1

from e in emps;

> val it =
[{deptno=18, 1d=160, name="Fred"},
{deptno=20,id=101, name="Velma"},
{deptno=30, id=162, name="Shaggy"},
{deptno=36, id=103, name="Scooby"}]
: {deptno:int, id:int, name:string} list

Chaining relational operators - step 2

from e in emps
order (e.deptno, DESC);

> val it =
[{deptno=18, 1d=160, name="Fred"},
{deptno=20,id=101, name="Velma"},
{deptno=30, id=103, name="Scooby"},
{deptno=306, id=102, name="Shaggy"}]
: {deptno:int, id:int, name:string} list

Chaining relational operators - step 3

from e in emps
order (e.deptno, DESC)
yield {e.name, namelLength = size(e.name), e.id, e.deptno};

> val it =
[{deptno=18, id=1006, name="Fred", nameLength=4},
{deptno=20,1id=101, name="Velma", nameLength=5},
{deptno=30, id=103, name="Scooby", nameLength=6},
{deptno=36, id=102, name="Shaggy", nameLength=6}]
: {deptno:int, id:int, name:string, namelLength:int} 1list

Chaining relational operators - step 4

from e in emps
order (e.deptno, DESC)
yield {e.name, namelLength = size(e.name), e.id, e.deptno}
where nameLength > 4;

> val it =
[{deptno=26,1d=1601, name="Velma", nameLength=5},
{deptno=30, id=103, name="Scooby", nameLength=6},
{deptno=36, id=102, name="Shaggy", nameLength=6}]
: {deptno:int, id:int, name:string, namelLength:int} 1list

Chaining relational operators - step 5

from e in emps
order (e.deptno, DESC)
yield {e.name, namelLength = size(e.name), e.id, e.deptno}
where namelLength > 4
group deptno compute {c = count over (), s = sum over namelLength};

> val it =
[{c=1,deptno=286, s=5},
{c=2,deptno=30,s=12}]
: {c:int, deptno:int, s:int} list

Chaining relational operators - step 6

from e in emps
order (e.deptno, DESC)
yield {e.name, namelLength = size(e.name), e.id, e.deptno}
where namelLength > 4
group deptno compute {c = count over (), s = sum over namelLength}

where s > 10;

> val it =
[{c=2,deptno=30,s=12}]
: {c:int, deptno:int, s:int} list

Chaining relational operators

from e in emps
order (e.deptno, DESC)
yield {e.name, namelLength = size(e.name), e.id, e.deptno}
where namelLength > 4
group deptno compute {c = count over (), s = sum over namelLength}
where s > 10
yield c + s;

> val it = [14] : int list

Morel implementations

Toolchain

e Morel Java release 0.7
e Morel Rust release 0.2

Morel implementations

Toolchain
e Morel Java release 0.7
e Morel Rust release 0.2
Runtime
® Java interpreter & shell
e Rust interpreter & shell
e WebAssembly interpreter
e Various SQL dialects (via Apache Calcite)
e Apache Arrow/DataFusion (planned)

4. High-level language

Things

t{l};g%i that the

hard to language

get right = .help
with

Sweet spot

y .
What S a hlgh-IEVEI record LogEntry(String timestamp, String message) {}
IanguagE? List<LogEntry> logsList = List.of(

new LogEntry("2025-10-25T08:15:23", "User login: alice"),
new LogEntry("2025-10-25T08:16:45", "API call: /users"),
new LogEntry("2025-10-25T09:23:11", "Error: timeout"),

Part 1: Java ArrayList new LogEntry("2025-10-25T10:05:33", "User login: bob"),
LogEntry("2025-10-25T14:22:01", "API call: /orders")

);

List<String> logsInRange(String startTime,
String endTime, List<LogEntry> logs) {
var result = new ArraylList<String>();
for (var entry : logs) {
if (entry.timestamp.compareTo(startTime) >= 0
&& entry.timestamp.compareTo(endTime) <= 0) {
result.add(entry.message);
}
}

return result;

}
logsInRange("2025-10-2509:00:00", "2025-10-2511:00:00", logsList):

What's a high-level

SortedMap<String, String> logsMap =

Ian ua e? new TreeMap<>(

g; E; . Map.ofEntries(
Map.entry("2025-10-25T08:15:23", "User login: alice"),
Map.entry("2025-10-25T08:16:45", "API call: /users"),
Map.entry("2025-10-25T09:23:11", "Error: timeout"),

Part 2: Java SortedMap Map.entry("2025-10-25T10:05:33", "User login: bob"),
Map.entry("2025-10-25T14:22:01", "API call: /orders")

));

List<String> logsInRange(String startTime,
String endTime, SortedMap<String, String> logs) {
var result = new ArrayList<String>();
var subMap = logs.subMap(startTime, true, endTime, true);
for (var message : subMap.values()) {
result.add(message) ;

}

return result;

}
logsInRange("2025-10-2509:00:00", "2025-10-2511:00:00", logsMap);

What's a high-level gy .
et mut qgs_map”— BTreeMap: ” .
Ianguage? logs_map.insert("2025-1 grSpTm—— .m

"User login: alice"
logs_map.insert("2025 -l itt> | to_string()

"API call: /users"}to_string()p;

logs_map.insert("20 *11"L to_string()

Part 3: Rust BTreeMap "Error: timeout'}.

d L to_string()
Cro-string)
logs_map.insert("2025z - il "
"API call: /orders" ;

ange(start_time: E tr, end_time:tr,

TreeMap<String, ring>) -> Vec<3STring> {
result = Vec::new();

mestamp, message)

in logs.range(start_ = | .=end_tim {

result.push(messag
}

result

}
logs_in_range("2025-10-2509:00:00", "2025-10-2511:00:00", logsList);

What,s d high_IEVEI logsList = |

I n a e? "2025-10-25T08:15:23", "User login: alice"),
a gu g . "2025-10-25T08:16:45", "API call: /users"),
"2025-10-25T09:23:11", "Error: timeout"),

"2025-10-25T10:05:33", "User login: bob"),
"2025-10-25T14:22:01", "API call: /orders")

Part 4: Morel list .

fun logsInRange (startTime, endTime, logs) =
from (timestamp, message) in logs
where timestamp >= startTime
andalso timestamp <= endTime
yield message;

logsInRange ("2025-10-2509:00:00", "2025-10-2511:00:00", logsList);

high-level programming language n.
A programming language that requires

you to specify only the details that

matter.

h. Best of both

Relational \ Functional

languages programming
languages

Best of functional programming languages

General-purpose

If it compiles, it probably works
Refactoring & autocompletion
Git

Documentation in the code
Unit tests in the same language
Modules & versioning

Abstraction

Schema evolution

Create emps table Change type of hiredate Add rating column,
with 4 columns column from string to date default 2.5

Application A Application B
sees 4 columns sees 5 columns

Types and data evolve independently

Schema @

Data

Create emps table

with 4 columns

Change type of hiredate
column from string to date

Initially O
rows

Insert
1,000 rows

Delete 100
rows

Add rating column,
default 2.5

Application B
sees 5 columns,

900 rows

Application A
sees 4 columns,

1,200 rows
Insert 300

rows

Best of relational

Parallel/distributed execution

. tve~ nat = int check (fn v => v >= 0);
Domain > type nat
Algebraic optimization type empno = nat;
> type empno
Optimize data structures type hr = {
emps: employee bag check (fn emps =>
. not (exists e in emps
Incremental computation __ group e.empno compute count
. where count > 1),
Constraints anary depts: department bag check (fn depts =>
. not (exists d in depts
key = group d.deptno compute count
Derived data where count > 1)

check (fn hr =>
not (exists e in hr.emps yield e.deptno

Views Forei t dietinet
orel ke ~ __ excep istinc
gh key (from d in hr.depts yield d.deptno)));

type hr

Constraints, derived data, and views

Constraint

Derived data

View

Differences

check (from e in products unorder)
= (from e in products_by_mfr unorder)

CREATE MATERIALIZED VIEW products_by_mfr AS
SELECT *
FROM products
ORDER BY mfr

fun products_by_mfr () =

from p in products
order p.mfr

e What happens when I try to insert a row into one data set but not the other?

e (Can I define a lossy view? (e.g. orders group by week, zip code)
e (an I define a denormalized view? (e.g. orders with nested order-items)

Best of both

Relational

Efficient parallel/distributed execution
Algebraic optimization

Optimize data structures

Incremental computation

Constraints

Derived data

Views

Functional

General-purpose

If it compiles, it probably works
Refactoring & autocompletion
Git

Documentation in the code
Unit tests in the same language
Modules & versioning

Abstraction

Data language

Database

@julianhyde - @morel_lang
https://github.com/julianhyde - https://github.com/hydromatic/morel - https://github.com/hydromatic/morel-rust

