
Morel: A language
for data
Julian Hyde

South Bay Systems meetup ∙ Mountain View, CA ∙ November 19, 2025

South Bay Systems: Morel / Query Optimization as a Service
Wednesday, November 19 6:00 PM - 8:00 PM
StarTree Inc. Mountain View, California

About Event

 Welcome to another edition of South Bay Systems! This time we bring
you two wonderful talks: Julian Hyde will be speaking about Morel, a
new functional database query language in development, and Yuanyuan
Tian will be presenting the CIDR'25 paper on Query Optimization as a
Service.

 Agenda

 6:00 PM: Doors open, food and socializing
 6:30 PM — 6:50 PM: Morel Talk
 6:50 PM — 7:30 PM: QOaaS Talk
 7:30 PM onward : Community socializing!

 Food and beverages will be provided, courtesy of our hosts, StarTree.

Morel: A language for data

 SQL excels at queries but struggles with streaming, incremental
computation, version control, refactoring, and modern development
workflows. Can we build a language that keeps SQL's strengths while
addressing these limitations?

 Morel combines functional programming with relational algebra to
create a language as powerful as SQL but capable of solving a wider
class of problems. This session introduces Morel and demonstrates how
it addresses challenges like query federation, SQL dialect translation,
streaming, and data engineering.

 Speaker Bio

 Julian Hyde is the author of Morel and creator of Apache Calcite, a
widely-used open source query planning engine. He has pioneered SQL
extensions for streaming and BI, and held senior engineering positions
at Google and Hortonworks.

1. Databases & programming languages

Data access (CRUD)

Database

Create order 934

Retrieve order 934

Update order 934

Delete order 934

Query language

Database

SQL

Programming languageQuery language

Database Object
store Queue Memory

SQL Python / Java / Rust + SQL

Data language

Database Object
store Queue Memory

Morel

About me

Agenda
1. Databases & programming languages
2. Data language
3. Functional + relational
4. A high-level language
5. Best of both

2. Data language

What do we want from a data language?

"Hello, world!";
> val it = "Hello, world!" : string

[1, 2, 3];
> val it = [1,2,3] : int list

(3.14, true);
> val it = (3.14, true) : real * bool

{empno = 100, ename = "SCOTT", job = "MANAGER"};
> val it : {empno:int,ename:string,job:string}

val depts = [
 {deptno = 10, dname = "SALES", emps = []},
 {deptno = 20, dname = "MARKETING", emps = [
 {empno = 100, ename = "SCOTT", job = "MANAGER"},
 {empno = 110, ename = "OATES", job = "CLERK"}
]}];
> val depts
 : {deptno:int,dname:string,
 emps:{empno:int, ename:string, job:string} list} list

1. Data

What do we want from a data language?

substring ("abcde", 1, 2);
> val it = "bc" : string

tl [1, 2, 3];
> val it = [2,3] : int list

from i in [1, 2, 3, 4, 5]
 where i mod 2 = 1
 yield i * i;
> val it = [1,9,25] : int list

fun categorize (x, y) =
 case (x mod 2, y mod 2) of
 (0, 0) => "both even"
 | (1, 1) => "both odd"
 | (_, _) => "odd and even";
> val categorize = fn : int * int -> string

1. Data
2. Expressions

What do we want from a data language?

fn x => x * x;
> val it = fn : int -> int

map (fn x => x * x) [1, 2, 3, 4];
> val it = [1,4,9,16] : int list

fun factorial 1 = 1
 | factorial n = n * (factorial (n - 1));
> val factorial = fn : int -> int

1. Data
2. Expressions
3. Functions

What do we want from a data language?

type employee =
 {empno:int, ename:string, is_mgr:bool,
 mgrno:int option};
> type employee

datatype color = BLUE | GREEN | RED;
> datatype color = BLUE | GREEN | RED

datatype ‘a option = NONE | SOME of ‘a;
> datatype option

SOME "abc";
> val it = SOME “abc” : string option

NONE;
> val it = NONE : ‘a option

1. Data
2. Expressions
3. Functions
4. Types

3. Functional + relational

Relational algebra in a functional programming language

Relational algebra

∪ union
\ minus
∩ intersect
σ filter
Π project
⨝ join

Relational operators as functions

val union = fn : 'a list * 'a list -> 'a list
val except = fn : 'a list * 'a list -> 'a list
val intersect = fn : 'a list * 'a list -> 'a list
val filter = fn : ('a -> bool) -> 'a list -> 'a list
val map = fn : ('a -> 'b) -> 'a list -> 'b list
val join = fn
 : 'a list * 'b list * ('a * 'b -> bool)
 -> ('a * 'b) list

Chaining relational operators
- from e in emps
= order e.deptno, e.id desc
= yield {e.name, nameLength = String.size e.name, e.id, e.deptno}
= where nameLength > 4
= group deptno compute c = count, s = sum of nameLength
= where s > 10
= yield c + s;

val it = [14] : int list

from e in emps
 order (e.deptno, DESC)
 yield {e.name, nameLength = size(e.name), e.id, e.deptno}
 where nameLength > 4
 group deptno compute {c = count over (), s = sum over nameLength}
 where s > 10
 yield c + s;

> val it = [14] : int list

Chaining relational operators - step 1
from e in emps;

> val it =
 [{deptno=10,id=100,name="Fred"},
 {deptno=20,id=101,name="Velma"},
 {deptno=30,id=102,name="Shaggy"},
 {deptno=30,id=103,name="Scooby"}]
 : {deptno:int, id:int, name:string} list

Chaining relational operators - step 2
from e in emps
 order (e.deptno, DESC);

> val it =
 [{deptno=10,id=100,name="Fred"},
 {deptno=20,id=101,name="Velma"},
 {deptno=30,id=103,name="Scooby"},
 {deptno=30,id=102,name="Shaggy"}]
 : {deptno:int, id:int, name:string} list

Chaining relational operators - step 3
from e in emps
 order (e.deptno, DESC)
 yield {e.name, nameLength = size(e.name), e.id, e.deptno};

> val it =
 [{deptno=10,id=100,name="Fred",nameLength=4},
 {deptno=20,id=101,name="Velma",nameLength=5},
 {deptno=30,id=103,name="Scooby",nameLength=6},
 {deptno=30,id=102,name="Shaggy",nameLength=6}]
 : {deptno:int, id:int, name:string, nameLength:int} list

Chaining relational operators - step 4
from e in emps
 order (e.deptno, DESC)
 yield {e.name, nameLength = size(e.name), e.id, e.deptno}
 where nameLength > 4;

> val it =
 [{deptno=20,id=101,name="Velma",nameLength=5},
 {deptno=30,id=103,name="Scooby",nameLength=6},
 {deptno=30,id=102,name="Shaggy",nameLength=6}]
 : {deptno:int, id:int, name:string, nameLength:int} list

Chaining relational operators - step 5
from e in emps
 order (e.deptno, DESC)
 yield {e.name, nameLength = size(e.name), e.id, e.deptno}
 where nameLength > 4
 group deptno compute {c = count over (), s = sum over nameLength};

> val it =
 [{c=1,deptno=20,s=5},
 {c=2,deptno=30,s=12}]
 : {c:int, deptno:int, s:int} list

Chaining relational operators - step 6
from e in emps
 order (e.deptno, DESC)
 yield {e.name, nameLength = size(e.name), e.id, e.deptno}
 where nameLength > 4
 group deptno compute {c = count over (), s = sum over nameLength}
 where s > 10;

> val it =
 [{c=2,deptno=30,s=12}]
 : {c:int, deptno:int, s:int} list

Chaining relational operators
from e in emps
 order (e.deptno, DESC)
 yield {e.name, nameLength = size(e.name), e.id, e.deptno}
 where nameLength > 4
 group deptno compute {c = count over (), s = sum over nameLength}
 where s > 10
 yield c + s;

> val it = [14] : int list

Toolchain

● Morel Java release 0.7
● Morel Rust release 0.2

Morel implementations

Toolchain

● Morel Java release 0.7
● Morel Rust release 0.2

Runtime

● Java interpreter & shell
● Rust interpreter & shell
● WebAssembly interpreter
● Various SQL dialects (via Apache Calcite)
● Apache Arrow/DataFusion (planned)

Morel implementations

4. High-level language

Things
 that the

 language
can help

with

Things
that are
hard to

get right

Sweet spot

What’s a high-level
language?

record LogEntry(String timestamp, String message) {}

List<LogEntry> logsList = List.of(
 new LogEntry("2025-10-25T08:15:23", "User login: alice"),
 new LogEntry("2025-10-25T08:16:45", "API call: /users"),
 new LogEntry("2025-10-25T09:23:11", "Error: timeout"),
 new LogEntry("2025-10-25T10:05:33", "User login: bob"),
 new LogEntry("2025-10-25T14:22:01", "API call: /orders")
 // ... millions of log entries
);

List<String> logsInRange(String startTime,
 String endTime, List<LogEntry> logs) {
 var result = new ArrayList<String>();
 for (var entry : logs) {
 if (entry.timestamp.compareTo(startTime) >= 0
 && entry.timestamp.compareTo(endTime) <= 0) {
 result.add(entry.message);
 }
 }
 return result;
}

logsInRange("2025-10-2509:00:00", "2025-10-2511:00:00", logsList);

Part 1: Java ArrayList

What’s a high-level
language?

SortedMap<String, String> logsMap =
 new TreeMap<>(
 Map.ofEntries(
 Map.entry("2025-10-25T08:15:23", "User login: alice"),
 Map.entry("2025-10-25T08:16:45", "API call: /users"),
 Map.entry("2025-10-25T09:23:11", "Error: timeout"),
 Map.entry("2025-10-25T10:05:33", "User login: bob"),
 Map.entry("2025-10-25T14:22:01", "API call: /orders")
 // ...
));

List<String> logsInRange(String startTime,
 String endTime, SortedMap<String, String> logs) {
 var result = new ArrayList<String>();
 var subMap = logs.subMap(startTime, true, endTime, true);
 for (var message : subMap.values()) {
 result.add(message);
 }
 return result;
}

logsInRange("2025-10-2509:00:00", "2025-10-2511:00:00", logsMap);

Part 2: Java SortedMap

What’s a high-level
language?

let mut logs_map = BTreeMap::new();
logs_map.insert("2025-10-25T08:15:23".to_string(),
 "User login: alice".to_string());
logs_map.insert("2025-10-25T08:16:45".to_string(),
 "API call: /users".to_string());
logs_map.insert("2025-10-25T09:23:11".to_string(),
 "Error: timeout".to_string());
logs_map.insert("2025-10-25T10:05:33".to_string(),
 "User login: bob".to_string());
logs_map.insert("2025-10-25T14:22:01".to_string(),
 "API call: /orders".to_string());

fn logs_in_range(start_time: &str, end_time: &str,
 logs: &BTreeMap<String, String>) -> Vec<String> {
 let mut result = Vec::new();
 for (_timestamp, message)
 in logs.range(start_time.to_string()..=end_time.to_string()) {
 result.push(message.clone());
 }
 result
}

logs_in_range("2025-10-2509:00:00", "2025-10-2511:00:00", logsList);

Part 3: Rust BTreeMap

What’s a high-level
language?

val logsList = [
 ("2025-10-25T08:15:23", "User login: alice"),
 ("2025-10-25T08:16:45", "API call: /users"),
 ("2025-10-25T09:23:11", "Error: timeout"),
 ("2025-10-25T10:05:33", "User login: bob"),
 ("2025-10-25T14:22:01", "API call: /orders")
 (* ... millions of log entries *)
];

fun logsInRange (startTime, endTime, logs) =
 from (timestamp, message) in logs
 where timestamp >= startTime
 andalso timestamp <= endTime
 yield message;

logsInRange ("2025-10-2509:00:00", "2025-10-2511:00:00", logsList);

Part 4: Morel list

high-level programming language n.
A programming language that requires
you to specify only the details that
matter.

5. Best of both

Relational
languages

Functional
programming

languages

Best of functional programming languages
General-purpose

If it compiles, it probably works

Refactoring & autocompletion

Git

Documentation in the code

Unit tests in the same language

Modules & versioning

Abstraction

Schema evolution

Schema

Change type of hiredate
column from string to date

Add rating column,
default 2.5

Create emps table
with 4 columns

Application A
sees 4 columns

Application B
sees 5 columns

Types and data evolve independently

Schema

Data

Change type of hiredate
column from string to date

Add rating column,
default 2.5

Insert
1,000 rows

Delete 100
rows

Insert 300
rows

Create emps table
with 4 columns

Initially 0
rows

Application A
sees 4 columns,

1,200 rows

Application B
sees 5 columns,

900 rows

Best of relational
Parallel/distributed execution

Algebraic optimization

Optimize data structures

Incremental computation

Constraints

Derived data

Views

type nat = int check (fn v => v >= 0);
> type nat

type empno = nat;
> type empno

type hr = {
 emps: employee bag check (fn emps =>
 not (exists e in emps
 group e.empno compute count
 where count > 1),
 depts: department bag check (fn depts =>
 not (exists d in depts
 group d.deptno compute count
 where count > 1)
} check (fn hr =>
 not (exists e in hr.emps yield e.deptno
 except distinct
 (from d in hr.depts yield d.deptno)));
> type hr

Primary
key

Foreign key

Domain

Constraint check (from e in products unorder)
 = (from e in products_by_mfr unorder)

Derived data CREATE MATERIALIZED VIEW products_by_mfr AS
 SELECT *
 FROM products
 ORDER BY mfr

View fun products_by_mfr () =
 from p in products
 order p.mfr

Constraints, derived data, and views

Differences

● What happens when I try to insert a row into one data set but not the other?
● Can I define a lossy view? (e.g. orders group by week, zip code)
● Can I define a denormalized view? (e.g. orders with nested order-items)

Best of both
Relational Functional
Efficient parallel/distributed execution

Algebraic optimization

Optimize data structures

Incremental computation

Constraints

Derived data

Views

General-purpose

If it compiles, it probably works

Refactoring & autocompletion

Git

Documentation in the code

Unit tests in the same language

Modules & versioning

Abstraction

Data language

Database Object
store Queue Memory

Morel

Morel: A language
for data

@julianhyde ∙ @morel_lang
https://github.com/julianhyde ∙ https://github.com/hydromatic/morel ∙ https://github.com/hydromatic/morel-rust

